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ABSTRACT

Conventional approaches to meeting the demands of computing power are finding it difficult to keep
up with the sharp rise in demand. Alternative computer paradigms have therefore proliferated in an effort to
address this discrepancy. An emerging technique for increasing speed, space efficiency, and energy
consumption in error-resilient applications like computer vision and machine learning is approximate
computing, or AxC.
Accuracy is sacrificed in exchange for these improvements. Because of their low power consumption and
intrinsic non-volatility, which make them appropriate for In-Memory Computation (IMC), memristors have
attracted a lot of attention from a technological standpoint. In order to address the discrepancy between
performance progress and demand increase, another computer paradigm has emerged.
We use Material Implication (IMPLY), a memristive stateful in-memory logic, in this study. In the framework
of AxC, we study sophisticated adder topologies with the goal of fusing the advantages of both cutting-edge
computing paradigms. For every adder topology based on IMPLY, we provide two estimated methods.
Compared to the comparable exact full adders, they lower the number of steps by 6% to 54% and the energy
consumption by 7% to 54% when integrated into a Ripple Carry Adder (RCA).We compare our work with
State-of-the-Art (SoA) circuit-level approximations that improve speed and energy efficiency by up to 72% and
34%, respectively, and lower the Normalized Median Error Distance (NMED) by up to 81%. We assess our
adders in four widely used image processing applications and give two more test datasets. In most cases, our
proposed adders may reduce the number of image processing steps and energy usage by up to 60% and 57%,
respectively, while improving quality metrics over the SoA.

I. INTRODUCTION and video processing applications are error robust

Since a large percentage of fundamental
instructions rely on addition and multiplication,
adding operations are fundamental to digital
arithmetic [1]. Improving adders is essential to
raising total computing performance in order to
satisfy the quickly increasing demand for processing
power. As Moore's Law slows down [2], transistors
hit their physical limits [3], and computing's
footprint grows exponentially [4], more emphasis is
being paid to investigating novel computing
paradigms and cutting-edge technology. AxC is
quickly becoming a viable way to improve compute
efficiency and solve the power-wall issue [2], [5]. It
is possible to obtain notable improvements in speed,
area, and energy consumption by approximating
computer operations. These enhancements come at
the expense of accuracy [1], [2], and [5].
Approximating some features can greatly reduce
computer time and power consumption since image

[2], [6], and [7]. Furthermore, sectors that are
closely related to imaging applications, such
robotics, data mining, communication, pattern
recognition, and machine learning, might also
benefit [2], [8], [9], [10], and [11].Complementary
Metal-Oxide Semiconductor (CMOS) technology
has been used to create a number of estimated
adders [1], [12], [13], and [14].The Von-Neumann
bottleneck, which normally arises between logic and
memory, is the fundamental issue that unites them
all. One possible remedy for this problem is IMC,
which is a method for carrying out calculations
directly in  memory. One noteworthy new
component that shows promise is the memristor
[15]. The memristor is the best option for IMC
memory cells because of its intrinsic capacity to
carry out logical processes and store non-volatile
data in its resistive state [16], [17]. Memristors are
further positioned as prospective candidates for
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future computing breakthroughs by additional
characteristics including their compact form factor
and low power consumption [18], [19], [20], and
[21]. The stateful logic IMPLY is one of the most
widely used options in the context of IMC. It proved
to be the most dependable stateful logic in [22] and
is compatible with the crossbar array.

believing it to be the best option for these kinds of
applications [16], [23]. There are three types of
structures that are now available for carrying out
IMPLY operations: serial, parallel, and hybrid.[19],
[24], [25], and [26] topologies. Every topological
implementation is competitive because it provides
unique benefits in one or more criteria, such speed
or space utilization. Two estimated IMPLY -based
adders for the serial, parallel, semi-serial, and semi-
parallel topologies are shown in this study.

PROPOSED METHOD

The following is a summary of this paper's
contributions:

* Eight new approximated adders were created using
two novel approximation techniques for imply-
based adder design for each of the four imply-based
topologies, enhancing speed, energy consumption,
and error metrics in comparison to soa exact and
approximated adders;

» Offering a new evaluation dataset for grayscale
filtering and image addition;

* For the first time, introducing estimated adders to
the parallel and semi-parallel architecture.

Il. LITERATURE REVIEW

A. Raghunathan, S. P. Park, D. Mohapatra, K. Roy,
and V. Gupta The impact Accurate adders for
approximation computation with reduced power
consumption Portable multimedia devices that use
different signal processing techniques and
architectures must have low power consumption.
Human senses, which are not flawless, interpret the
end product in the majority of multimedia
applications. The requirement to provide accurate
numerical results is eliminated by this fact. Prior
studies in this area take use of error-resiliency
mostly by voltage over-scaling, with the mistakes
that follow being reduced by computational and
architectural methods. As an alternate strategy to
capitalize on the relaxation of numerical precision,
we suggest logic complexity reduction in this study.
We illustrate this idea by putting forward a humber
of approximate or imprecise Full Adder (FA) cells

that are simpler at the transistor level. We then use
these cells to create approximate multi-bit adders.
Apart from the intrinsic decrease in switching
capacitance, our methods lead to noticeably shorter
critical pathways, which facilitate voltage scaling.
Using the suggested approximate arithmetic units,
we create designs for image and video compression
algorithms and test them to show how effective our
method is. When compared to current
implementations, post-layout simulations show
power and area reductions of up to 60% and 37%,
respectively, with no output quality loss.

M. Schulte, F. Lombardi, and W. Liu, A look into
approximation computing from both a past and a
future perspective Traditionally, computing systems
are built to function as precisely as feasible.
However, there are significant technological
obstacles to this trend, including high performance,
circuit dependability, and power consumption.
Computing system performance and power
consumption have been continuously increased for
about 50 years, mostly through technological
scaling. According to Dennard's scaling, transistors
have become more smaller and their supply voltage
has decreased over time, allowing circuits to
function at greater frequencies while dissipating
almost the same amount of power. However, it is
challenging to enhance performance further under
the same power limitations since Dennard's scaling
trends toward an end. Power consumption has
always been a significant issue and is currently a
crucial issue for the whole industry.When the
feature size of complementary metal-oxide-
semiconductor (CMOS) technology is decreased
below 7 nm, reliability declines in addition to power
because it becomes more difficult to manage and
avoid defects and parameter fluctuations at
advanced nanoscales. As a result, production and
verification costs will rise dramatically to guarantee
the total correctness of signals, logic values,
devices, and interconnects.

V. Gupta, D. Mohapatra, A. Raghunathan, and K.
Roy, Approximate adders for low-power digital
signal processing For portable multimedia devices
using different signal processing methods and
architectures, low power consumption is a crucial
need. Humans can infer valuable information from
somewhat inaccurate outputs in the majority of
multimedia applications. As a result, we are not
required to generate accurate numerical results.
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In this setting, earlier research takes use of error
resilience.mostly by voltage over scaling, with the
ensuing mistakes being  mitigated through
computational and architectural approaches. In order
to exploit the relaxation of numerical precision, we
suggest in this study a different strategy: logic
complexity reduction at the transistor level. In order
to illustrate this idea, we suggest a number of
approximate or imprecise complete adder cells that
are simpler at the transistor level. We then use these
cells to create approximation multi-bit adders. Apart
from the intrinsic decrease in switching capacitance,
our methods lead to noticeably shorter critical
pathways, which facilitate voltage scaling. Using the
suggested approximate arithmetic units, we create
designs for image and video compression algorithms
and test them to show how effective our method is.
Additionally, we establish basic mathematical
models for these approximation adders' inaccuracy
and power consumption. Additionally, we show
how useful these approximation adders are in two
digital signal processing architectures  with
particular quality constraints: the finite impulse
response filter and the discrete cosine transform.
Comparing the suggested approximation adders to
current implementations that use correct adders,
simulation findings show power savings of up to
69%.

N. Taheri Nejad and F. Seiler, A semi-serial
approximation in-memristor adder based on IMPLY
In recent years, research and development has
focused heavily on new technologies and computing
paradigms to help ease the Von Neumann
bottleneck. From a computational and technical
standpoint, memristors provide novel opportunities.
Because they can carry out logical operations in
memory, they are appropriate for In-Memory
Computation (IMC) and have good data storage
capabilities. Approximate computing, which is
employed in error-resistant applications, is another
new computing paradigm that lowers computation
time and space usage.

Here, we suggest a brand-new approximated
complete adder that employs a semi-serial structure
and the stateful logic Material Implication (IMPLY).
We include this complete adder into a Ripple Carry
Adder (RCA), which we then assess at the circuit
level. The error metrics were assessed and
contrasted with adders based on State-of-the-Art
(SoA) IMPLY. In comparison to the precise
technique, our solution uses up to 29% fewer steps

and up to 34% less energy at 8-bit, and the
Normalized Median Error Distance (NMED) is less
than 0.01 in the majority of cases. The
corresponding quality metrics are computed after
applying the suggested adder to image processing.
Given that the Peak Signal-to-Noise Ratio (PSNR)
is more than 30 dB, all tested approximation degrees
produce a suitable outcome. In comparison to the
precise calculations, the suggested method allows us
to save almost 13.5mJ of energy while gray-scale
filtering a 684x912 8-bit picture.

A. S. Baroughi, H. S. Shahhoseini, N. Taheri Nejad,
N. Amirafshar, and S. Shakibhamedan, ACE-CNN:
Energy-efficient CNN-based image categorization
with approximate carry disregard multipliers The
Signed Carry Disregard Multiplier (SCDM8) is a
series of signed approximation multipliers designed
specifically for Convolutional Neural Network
(CNN) integration. To assess the trade-off between
accuracy and approximation, extensive tests were
carried out on well-known pre-trained CNN models,
such as VGG16, VGG19, ResNet101, ResNet152,
MobileNetV2, InceptionV3, and ConvNeXt-T. The
outcomes show that ACE-CNN works better than
other setups, providing a favorable trade-off
between accuracy and computational economy.
According to our tests, SCDM8 reduces power
usage by 35% on average while only slightly
lowering accuracy by 1.5% when used with VGG16.
Similarly, SCDM8 saves 42% of the energy while
only compromising 1.8% of the accuracy when
integrated into ResNet152. The first approximation
version of ConvNeXt, ACE-CNN, offers an energy
improvement of up to 72% at a cost of less than
1.3% Top-1 accuracy. These findings demonstrate
how well SCDM8 works as an approximation
technique for a range of CNN models. For image
classification tasks in CNNS, our investigation
demonstrates that the ACE-CNN performs better
than state-of-the-art methods in terms of accuracy,
energy efficiency, and computing precision. When
we looked at how resilient CNN models were to
approximate multipliers, we found that resnet101
was the most resilient, with an average accuracy
difference of 0.97%, while lenet5 Inspired-CNN
was the least resilient, with an average accuracy
difference of 2.92%. By providing an efficient
approximation method for CNN multipliers, our
findings help choose energy-efficient approximate
multipliers for CNN-based systems and advance the
creation of energy-efficient deep learning systems.
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Significant energy reductions with almost no loss of
accuracy are made possible by the proposed
SCDMS8 family of approximation multipliers, which
opens up new possibilities for effective deep
learning applications.

H. Chible, M. Saleh, M. Alameh, M. Osta, M.
Ibrahim, and M. Valle, Techniques for approximate
computation in embedded machine learning
Incorporating intelligence into modern application
areas like wearable technology, portable healthcare
systems, and the Internet of Things is made possible
by embedding machine learning. An evaluation of
approximation computing techniques at the
algorithmic, architectural, and circuit levels is
presented in this work along with suggestions for
future advancements and wuses. The primary
objective Aims to look at how approximate
computing could make embedded Machine Learning
(ML) systems more feasible and less complex. Even
though machine learning (ML) is a strong paradigm
for applications in the perceptual domain (vision,
touch, hearing, etc.), real-time operation and ultra-
low power are still highly difficult goals because of
their ~ enormous  computational ~ complexity.
However, approximation computing has become a
viable way to lower time delay, simplify hardware,
and boost energy efficiency.

Bio-inspired imprecise computational blocks for
effective VLSI implementation of soft-computing
applications, H. R. Mahdiani, A. Ahmadi, S. M.
Fakhraie, and C. Lucas To calculate the exact
outcomes of the given computations, traditional
digital hardware computational blocks with various
architectures are used. Our suggested Bio-inspired
Imprecise Computational blocks (bics) are unique in
that they are made to deliver a useful approximation
of the outcome rather than its exact value at a
reduced cost. Compared to its exact competitors,
these new structures are more efficient in terms of
area, speed, and power usage. This work introduces
the synthesis findings, error behaviors, and detailed
descriptions of example BIC adder and multiplier
architectures. The hardware defuzzification block of
a fuzzy processor and a three-layer face recognition
neural network are then demonstrated to be
effectively implemented using these BIC structures.
Inexact designs for estimated low power addition by
cell replacement by H. A. Almurib, T. N. Kumar,
and F. Lombardi Three designs of an approximation
computing inexact adder cell are proposed in this
research. Comparing these cells to both known

inexact designs and an exact complete adder cell, a
significantly less number of transistors are needed.
At 45 nm, these imprecise cells are simulated and
compared in terms of error metrics (like error rate)
and circuit-based metrics (like energy consumption,
latency, complexity, and energy delay product).
Image addition is then explored as an application
after evaluating several metrics for approximation
computing through extensive simulation by
substituting inexact cells, as those suggested in this
work, for exact cells in a ripple carry adder. These
findings demonstrate that the suggested designs
outperform the current inexact cells reported in the
technical literature in terms of latency, switching
capacitance, and error metrics for picture quality
and processing, while also using the least amount of
power.

I1l. PROPOSED METHODOLOGY
3.1 METHODOLOGY

Redefining approximation logic functions
based on precise logic is a key strategy in the
construction of approximated circuits [2]. This can
be accomplished by employing a modified truth
table or by removing or altering parts of the precise
circuit [2], [38]. We can only utilize IMPLY and
FALSE operations since we are working on
topologies that are based on IMPLY. It is possible to
simulate Boolean logic with just these two functions
as they together make up the entire logic set {—, 1}
[27], [47]. One IMPLY operation, denoted as a = a
— 0, can be used to simulate an inversion. Another
memristor that has been previously reset is
necessary for this. The only functions that can be
replicated using two IMPLY operations are OR and
NAND, which makes them excellent candidates for
approximations. To minimize the ER for Sum and
Cout while reducing the number of steps, the state-
of-the-art (SOA) IMPLY-based approximations
were created [6, 34, 35].

cle. =0

out .i
.S'unz}w =ua; + b; =a; — b;.
Our goal in this study is to design the quickest adder
while maintaining acceptable quality, not to
decrease the ER. We developed and put into practice
two IMPLY-based algorithms for various adder
topologies, drawing inspiration  from the
methodology from [12]. As a result, we are using
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the effective OR emulation, which just needs two
IMPLY operations. For the parallel, semi-parallel,
serial, and semi-serial structures, we developed two
algorithmic strategies. For the remainder of this
study, we will refer to the algorithms by their
topology in conjunction with either NoCarry+ for
the advanced implementation or IMPLY-based
NoCarry (NC) for the base. Since the carry-out is
not propagated (for example, SINC and SINC+ for
the Serial IMPLY-based NoCarry(+) algorithm),
this name was selected. To establish the Sum for
each bit, the simple wversion just uses OR
combinations between the a and b inputs. No carry-
out is created or spread, and the carry-in is totally
ignored. The Cout is therefore assigned to the
logical value "0." The NoCarry version's logical
equations are

By altering the final approximated bit, we improved
the basic version in our second implementation. Up
to the final estimated complete adder, we use the
same formulae to compute the Sum and Cout. We
still ignore the carry-in at this point, but we create a
carry-out instead.to spread. This time, we set the
Cout to be an AND b in order to reduce the
likelihood of spreading the fake Cout to the precise
bits. For this enhanced implementation, the logical
equations are using an RCA integrated with k
approximation and n — k precise adders. To ensure
compatibility with precise adders, we made sure that
the sum for each suggested method is kept in the b-
memristor. Table Il displays the truth table for both
the standard and sophisticated implementations,
with the incorrect locations highlighted in red.
While the ER of Cout is 4/8 for the NoCarry and
only 2/8 for the sophisticated NoCarry+ adder, the
ER of Sum is 4/8 for both implementations.

ONCH _ 0 B < K
i T @
s aibj =a; = b; i =k
.S'um".w F=a; + b; =a; — b,

The carrying is the Cout of the preceding bit as we
wish to incorporate our whole adder as the bottom
bits in an RCA. In the advanced form, the carry-in is
likewise "0" since the Cout is set to "0" for all
adders except the final one. This missing carry
propagation attribute allows us to simplify the truth
table to a form in which ¢ = 0 and only a and b can
change. Table 111, where the ER of Sum is lowered
to 1/4, displays the reduced truth table. The
NoCarry+ adder has no erroneous Cout position in

the reduced truth table, although the NoCarry
adder's ER of Cout is likewise lowered to 1/4. With
this simplified version, an error only happens when
both a and b are logical "1." Here, it is crucial to
remember that the truth table is not actually
decreased. The inputs that can occur at each
estimated bit are highlighted using this reduced truth
table as a visualization tool.

TABLE 3.1: NOCARRY AND NOCARRY+
TRUTH TABLE

“Inputs Exact | No(

No Carry | No Carry + |
a | b | € ["Sum | Cout | Sum | Cout | Sum | '("Ilu'l’:
ojo0jo] 0 ] 0 1 0 0] o ] 0 |
oot 1 | 0 | 0 | 0 | o | o |
0 .Wli‘ 0 | 7577. 0 -77177. 7"77'77]7 .77()774
O a0 | 1 | 3| & | ad./| e
T T T S T [T ) S WY

]

|

TABLE 3.2: REDUCED NOCARRY AND
NOCARRY+ TRUTH TABLE

“Inputs “Exact | No Carry | No Carry + |

[aTh|[c=07] Sum | Cout | Sum | Cout | Sum | Cour |
FEEOI-0E T O 1 O O 01| ©
o T [ @ | 1 | o0 | 1| 0o | 1| 0
i L I N T I e = L T
0 O 0

A Serial Topology Consisting of SINC/SINC+

Memristors arranged in the same row or column of a
crosshar array and linked to the same resistor make
up the serial IMPLY topology [16], [27]. Because
there is just one processing region, activities are
carried out sequentially and parallelization is not
feasible. Table IV displays the SINC algorithm in its
entirety. To ensure proper operation, we reset the
work memristor in the first stage. We compute and
store the inversion of an in the work memristor in
the second phase. The Sum result, which is a + b, is
then saved in the b-memristor. Table V, which
follows the same methodology as the previous
version, shows the precise steps involved in the
SINC+ algorithm. The operations indicated in blue,
which are only calculated once in the final estimated
adder, are where they diverge. As a result, we
require a second work memory. Prior to the Sum
being stored in the b-memiristor in the third phase, it
is utilized to save the inversion of b. The inversion
is then stored in the c-memristor once ab has been
calculated. As a result, the Cout is equal to ab and is
usable for higher-bit computation. For an n-bit
calculation, the SINC method requires 2n + 1
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memristors and 3n steps. As we shall see in
subsequent sections, the SINC+ algorithm has
improved error-reduction behavior but requires 3n +
3 steps and 2n + 2 memristors.

TABLE 3.3: EXACT SINC ALGORITHM
PROCEDURE IN SERIAL TOPOLOGY

| Steps |

[ | [ wy; =10 False{uy)
2 w, =a— iy wy =a
3 b=a

b = .!.'.‘ y b

Operation | Equivalent Logic |

b=a+4+ b= Sum

B. PINC/PINC+ parallel topology

There are n distinct serial topologies that make up
the parallel topology. CMOS switches can be used
to link each of them to a common c-memristor [19].
Every bit in this structure may be calculated
concurrently. Because they depend on the result of
the previous bit, the only steps that cannot be
completed at the same time are those that depend on
the carry-in. The serial implementations from Table
IV and Table V follow the same precise process as
PINC and PINC+. Once more, just the final bit of
the PINC+ version uses the procedures in blue.

TABLE 3.4The precise steps used by the SINC+
algorithm in serial topology
(BLUE-COLORED PERFORMANCES ARE

ONLY DONE AT THE LAST
APPROXIMATED BIT OF SINC+.)
[ Steps Operation Equivalent Logic |

I [wy =0, wz =0 | False{w;, w3)

However, we compute all of the bits at once rather
than one after the other. We can fully parallelize
each estimated bit since the PINC and PINC+
algorithms are independent of the carry-in. Twelve
carry-independent steps are initially calculated by
the precise parallel method from [19]. Therefore,
before the carry-dependent portion of the first exact
algorithm starts, both PINC and PINC+ are run. By
using the PINC+ technique for the lower bits in an
RCA setup, we were able to display this in Figure 3.
As we can see, the number of precise adders n — k is
the sole factor that affects the overall number of
steps. The PINC algorithm is no different. For an n-
bit addition, the PINC method only needs three steps

and three memristors. The PINC+ adder requires 3n
+ 1 memristors and 6 stages.

C. S-SINC/S-SINCH+ is the semi-serial topology.
The a and b inputs are arranged in two parallel rows
in the semi-serial topology [25]. Switches can be
used to link both rows to the work and carry
memristors. In accordance with the original paper
[25], we will refer to the rows containing the a-
memristors and the b-memristors as Section | and
Section Il. Table VI displays the S-SINC method,
where we decreased the number of steps needed
perreduced to two.

This was accomplished using a work memristor
switching system, in which the calculations are
made using wl and w2 in turn. Parallel to this, the
unused work memristor is reset. Both work
memristors must be reset by taking an extra step
before the first bit.

Table VII displays the S-SINC+ algorithm. By
adding two more stages to the S-SINC method, we
compute the Cout = ab. The two work memristors
are utilized in parallel for the last estimated bit. For
a nbit computation, S-SINC needs 2n + 1 steps,
whereas the S-SINC+ method requires 2n + 3 steps.
Four switches and 2n+2 memristors are used in the
S-SINC method. Two more switches and an extra
memristor are required for the Cout in the advanced
method (S-SINC+).

TABLE 3.5: S-SINC ALGORITHM EXACT
PROCEDURE IN THE SEMI-SERIAL

TOPOLOGY
(BLUE-COLORED OPERATIONS ARE ONLY
PERFORMED ONCE.)

[Sieps [ Setion T | Secwn? | Equivakeat Togic
A\»\bh‘h M‘,‘ with w ..l vll |I -:;; 'n.‘._l ulvlj i w : I.iv;’ ‘I‘:| A:I 2!
1 |."l =a—u [ wy = 1 [ a & False(uy

2 b =y, <+ b bl b b= Sum

TABLE 3.6: S-SINC+ ALGORITHM EXACT
PROCEDURE IN THE SEMI-SERIAL
TOPOLOGY
Only one calculation is made for red operations.
BLUE-COLORED OPERATIONS ARE ONLY
DONE AT THE LAST APPROXIMATED BIT

[Siegs T Section | Socion Basvikos Logs
xoitch with uiy (n
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D. S-PINC/S-PINC+ Semi-Parallel Topology
Two parallel rows (parts) with either the input
memristors a and b make up the semi-parallel
topology [24]. A work memristor is also included in
each area. Furthermore, the The circuit's Section Il
contains the memristor. Switches (S1 for segment |
and S3 for Section II) can be used to link each
segment of the circuit to a resistor. The sections can
be linked together to share data using a third switch
(S2). This will be referred to as a "between sections"
computation. Please refer to [24] for more specific
details on the semi-parallel topology. Table VIII
displays the S-PINC algorithm, which is somewhat
comparable to SINC. The final step is calculated
differently for each segment. For an n-bit
calculation, this method needs 2n+1 Cmemristors
and 3n steps. To save the inversion of b in parallel
with the S-PINC steps, we employ an extra work
memristor in the S-PINC+ algorithm. Next, we must
compute ab and store it in the c-memristor in two
phases. This means that for an n-bit addition, the
method requires 2n + 3 memristors and 3n + 2 steps.
Table IX shows the precise process with the switch
states.

TABLE 3.7: PRECISE S-PINC PROCEDURE
IN THE SEMI-PARALLEL TOPOLOGY

[Steps | Oporavon | Section | (51,52,50) | Fouivalent Logic |
[ w =0 »Sect
)

m (Lo False{wy )

a-Secuon (AR "'y i

5 b =w —b hetween (0.1.1)

b=%—= Surm

TABLE 3.8: EXACT PROCEDURE OF S-
PINC+ IN THE SEMI-PARALLEL
TOPOLOGY
( Only the final approximate bit is used for

operations that are colored blue.)

L5

3.2 SIMULATING AT THE CIRCUIT LEVEL.:
A. Configuring a Circuit Simulation

We used LT-SPICE to simulate the algorithms at the
circuit level in order to confirm their operation. We
employed a model for this that was based on the
SPICE implementation of the Voltage-controlled
Threshold Adaptive Memristor (VTEAM) model
[36], [25], [48]. By fitting the model to a genuine
discrete Knowm memristor, the parameters in this
model are established similarly to those in Table X
[49]. This makes it easier for us to compare our

work with that of others who have used the same
model and boosts our confidence in the usefulness
of our circuit simulations. Similar to the distinctions
between integrated and discrete CMOS devices,
discrete memristors operate more slowly and use
more power. It becomes sense to anticipate that the
integrated memristor devices would operate with
much greater speed and power efficiency. We
employ measurement-fitted models to guarantee a
realistic and useful implementation of our suggested
circuits because integrated memristors are not
readily available. To enable an honest and
straightforward comparison to SoA works like [6],
[19], [27], and [35], we selected the IMPLY specific
parameters.

4. RESULTS & DISCUSSION

The simulation and implementation of accelerated
image processing using IMPLY-based no-carry
approximated adders is a structured process carried
out within the Xilinx Vivado Design Suite, a
leading platform for FPGA-based design. The
methodology begins by creating a new RTL
(Register Transfer Level) project in Vivado, where
the source files defining the arithmetic architecture
are introduced. In this study, the Kogge-Stone
Adder (KSA) is employed due to its parallel prefix
structure, which enables faster computation and
reduced delay compared to conventional ripple-
carry or carry-lookahead adders. Its efficiency
makes it particularly suitable for high-performance
applications such as real-time image processing.

Following the inclusion of Verilog modules, the
FPGA board specifications are defined through
Xilinx’s device library, ensuring correct mapping of
I/0 pins. At this stage, the tb_ KSA64 module is
designated as the top-level source for the initial
simulation. Running the simulation provides
insights into device utilization, particularly the
estimated versus available pins, and also generates a
schematic representation of the design. These
outputs assist in validating the logical structure
before hardware implementation.

The subsequent step involves implementation,
where the toolchain evaluates hardware-level
performance metrics. This includes estimation
of power consumption, total on-chip power
dissipation, and junction temperature, which are
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critical parameters in optimizing FPGA-based
accelerators for energy-efficient image processing.
The implementation phase also produces a summary
of resource utilization, which is essential for
determining scalability and feasibility on specific
FPGA boards.

Next, RTL  analysis elaborates  the  device FIGURE: IMPLEMENTATION OF THE
architecture, offering a hierarchical view of the ) PROJECT_ )
design. This step is particularly significant from a (on-chip power consumption details)

research perspective, as it validates whether the
structural optimization achieved through
approximated adders translates into reduced
complexity ~ without compromising  functional =45
accuracy. Finally, the tb_ KSA64 (Test.v) testbench 22.E
is selected as the top module, and a comprehensive
simulation is executed. The final simulation output &
verifies functional correctness, thereby =&
demonstrating how  IMPLY-based no-carry FIGURE: Schemati
approximated adders can accelerate image
processing by achieving a balance between
performance, power efficiency, and hardware
resource utilization.

This methodology not only validates the feasibility
of approximate arithmetic in hardware accelerators
but also highlights its potential for applications
requiring high-speed and energy-efficient image
processing.

¢ Diagram

FIGURE: Final Output Of The Project

— = e = 5. CONCLUSION
In this study, eight algorithms on the serial,
s o parallel, semi-serial, and semi-parallel topologies
—— RS S are mapped to two approximated addition ideas for
' implementation utilizing memristive IMPLY logic.
; - We demonstrated their advantages by using them in
in-memory image processing. To cut down on steps,
: . energy, and space usage, we made use of each adder
- = o structure's special benefits. Compared to precise
: = adders, our method saves up to 12% of memristors,
oo = 8% to 54% of energy usage, and 6% to 54% of
e T o - steps. Our method increases the speed by up to 72%
= e and is 9%-43% more energy efficient than existing
v v approximated adders. In terms of both NMED and
MRED, we were able to accomplish this while
producing a greater accuracy. To the best of our
knowledge, we report the first estimated adders in
both parallel and semi-parallel topologies, which
reduced the process count of an 8-bit addition to just
33 steps. We evaluated the error metrics, confirmed
that our adders worked, and incorporated them as

FIGURE: SIMULATION OF THE PROJECT
(the utilization of the 1/0 pins)
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the bottom bits of an RCA. In many real-world
image processing applications, we used these partly
approximated RCAs. To broaden the scope of our
research, we suggested fresh datasets for picture
addition and grayscale filtration. With up to 5/8
estimated adders, we were able to obtain satisfactory
PSNR measurements of more than 30dB. When
compared to SOA approximations, we increased the
number of steps by up to 72%, the energy
consumption by 9% — 43%, and the image quality
by up to 3.4dB of PSNR.

We refined our NoCarry technique to use just one
cycle per estimated bit in the image subtraction
application. This resulted in a 57% increase in
energy efficiency. Additionally, our method
produces 3dB-10dB of PSNR more picture quality
than SoA estimates. As an illustration of more
intricate end uses, we tested our estimated adders on
Gaussian smoothing after integrating them into an
array multiplier. According to our findings, the
suggested approach can approximate up to 86%
while still producing results that are satisfactory.
Future studies should focus on a more thorough
examination of  more application-specific
approximations and their design.
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