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ABSTRACT 

Conventional approaches to meeting the demands of computing power are finding it difficult to keep 

up with the sharp rise in demand. Alternative computer paradigms have therefore proliferated in an effort to 

address this discrepancy. An emerging technique for increasing speed, space efficiency, and energy 

consumption in error-resilient applications like computer vision and machine learning is approximate 

computing, or AxC. 

Accuracy is sacrificed in exchange for these improvements. Because of their low power consumption and 

intrinsic non-volatility, which make them appropriate for In-Memory Computation (IMC), memristors have 

attracted a lot of attention from a technological standpoint. In order to address the discrepancy between 

performance progress and demand increase, another computer paradigm has emerged. 

We use Material Implication (IMPLY), a memristive stateful in-memory logic, in this study. In the framework 

of AxC, we study sophisticated adder topologies with the goal of fusing the advantages of both cutting-edge 

computing paradigms. For every adder topology based on IMPLY, we provide two estimated methods. 

Compared to the comparable exact full adders, they lower the number of steps by 6% to 54% and the energy 

consumption by 7% to 54% when integrated into a Ripple Carry Adder (RCA).We compare our work with 

State-of-the-Art (SoA) circuit-level approximations that improve speed and energy efficiency by up to 72% and 

34%, respectively, and lower the Normalized Median Error Distance (NMED) by up to 81%. We assess our 

adders in four widely used image processing applications and give two more test datasets. In most cases, our 

proposed adders may reduce the number of image processing steps and energy usage by up to 60% and 57%, 

respectively, while improving quality metrics over the SoA. 

 

I.  INTRODUCTION 

Since a large percentage of fundamental 

instructions rely on addition and multiplication, 

adding operations are fundamental to digital 

arithmetic [1]. Improving adders is essential to 

raising total computing performance in order to 

satisfy the quickly increasing demand for processing 

power. As Moore's Law slows down [2], transistors 

hit their physical limits [3], and computing's 

footprint grows exponentially [4], more emphasis is 

being paid to investigating novel computing 

paradigms and cutting-edge technology. AxC is 

quickly becoming a viable way to improve compute 

efficiency and solve the power-wall issue [2], [5]. It 

is possible to obtain notable improvements in speed, 

area, and energy consumption by approximating 

computer operations. These enhancements come at 

the expense of accuracy [1], [2], and [5]. 

Approximating some features can greatly reduce 

computer time and power consumption since image 

and video processing applications are error robust 

[2], [6], and [7]. Furthermore, sectors that are 

closely related to imaging applications, such 

robotics, data mining, communication, pattern 

recognition, and machine learning, might also 

benefit [2], [8], [9], [10], and [11].Complementary 

Metal-Oxide Semiconductor (CMOS) technology 

has been used to create a number of estimated 

adders [1], [12], [13], and [14].The Von-Neumann 

bottleneck, which normally arises between logic and 

memory, is the fundamental issue that unites them 

all. One possible remedy for this problem is IMC, 

which is a method for carrying out calculations 

directly in memory. One noteworthy new 

component that shows promise is the memristor 

[15]. The memristor is the best option for IMC 

memory cells because of its intrinsic capacity to 

carry out logical processes and store non-volatile 

data in its resistive state [16], [17]. Memristors are 

further positioned as prospective candidates for 
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future computing breakthroughs by additional 

characteristics including their compact form factor 

and low power consumption [18], [19], [20], and 

[21]. The stateful logic IMPLY is one of the most 

widely used options in the context of IMC. It proved 

to be the most dependable stateful logic in [22] and 

is compatible with the crossbar array.  

believing it to be the best option for these kinds of 

applications [16], [23]. There are three types of 

structures that are now available for carrying out 

IMPLY operations: serial, parallel, and hybrid.[19], 

[24], [25], and [26] topologies. Every topological 

implementation is competitive because it provides 

unique benefits in one or more criteria, such speed 

or space utilization. Two estimated IMPLY-based 

adders for the serial, parallel, semi-serial, and semi-

parallel topologies are shown in this study. 

 

PROPOSED METHOD 

The following is a summary of this paper's 

contributions: 

• Eight new approximated adders were created using 

two novel approximation techniques for imply-

based adder design for each of the four imply-based 

topologies, enhancing speed, energy consumption, 

and error metrics in comparison to soa exact and 

approximated adders; 

• Offering a new evaluation dataset for grayscale 

filtering and image addition;  

• For the first time, introducing estimated adders to 

the parallel and semi-parallel architecture. 

 

II. LITERATURE  REVIEW 

A. Raghunathan, S. P. Park, D. Mohapatra, K. Roy, 

and V. Gupta The impact Accurate adders for 

approximation computation with reduced power 

consumption Portable multimedia devices that use 

different signal processing techniques and 

architectures must have low power consumption. 

Human senses, which are not flawless, interpret the 

end product in the majority of multimedia 

applications. The requirement to provide accurate 

numerical results is eliminated by this fact. Prior 

studies in this area take use of error-resiliency 

mostly by voltage over-scaling, with the mistakes 

that follow being reduced by computational and 

architectural methods. As an alternate strategy to 

capitalize on the relaxation of numerical precision, 

we suggest logic complexity reduction in this study. 

We illustrate this idea by putting forward a number 

of approximate or imprecise Full Adder (FA) cells 

that are simpler at the transistor level. We then use 

these cells to create approximate multi-bit adders. 

Apart from the intrinsic decrease in switching 

capacitance, our methods lead to noticeably shorter 

critical pathways, which facilitate voltage scaling. 

Using the suggested approximate arithmetic units, 

we create designs for image and video compression 

algorithms and test them to show how effective our 

method is. When compared to current 

implementations, post-layout simulations show 

power and area reductions of up to 60% and 37%, 

respectively, with no output quality loss. 

M. Schulte, F. Lombardi, and W. Liu, A look into 

approximation computing from both a past and a 

future perspective Traditionally, computing systems 

are built to function as precisely as feasible. 

However, there are significant technological 

obstacles to this trend, including high performance, 

circuit dependability, and power consumption. 

Computing system performance and power 

consumption have been continuously increased for 

about 50 years, mostly through technological 

scaling. According to Dennard's scaling, transistors 

have become more smaller and their supply voltage 

has decreased over time, allowing circuits to 

function at greater frequencies while dissipating 

almost the same amount of power. However, it is 

challenging to enhance performance further under 

the same power limitations since Dennard's scaling 

trends toward an end. Power consumption has 

always been a significant issue and is currently a 

crucial issue for the whole industry.When the 

feature size of complementary metal-oxide-

semiconductor (CMOS) technology is decreased 

below 7 nm, reliability declines in addition to power 

because it becomes more difficult to manage and 

avoid defects and parameter fluctuations at 

advanced nanoscales. As a result, production and 

verification costs will rise dramatically to guarantee 

the total correctness of signals, logic values, 

devices, and interconnects. 

V. Gupta, D. Mohapatra, A. Raghunathan, and K. 

Roy, Approximate adders for low-power digital 

signal processing For portable multimedia devices 

using different signal processing methods and 

architectures, low power consumption is a crucial 

need. Humans can infer valuable information from 

somewhat inaccurate outputs in the majority of 

multimedia applications. As a result, we are not 

required to generate accurate numerical results.  
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In this setting, earlier research takes use of error 

resilience.mostly by voltage over scaling, with the 

ensuing mistakes being mitigated through 

computational and architectural approaches. In order 

to exploit the relaxation of numerical precision, we 

suggest in this study a different strategy: logic 

complexity reduction at the transistor level. In order 

to illustrate this idea, we suggest a number of 

approximate or imprecise complete adder cells that 

are simpler at the transistor level. We then use these 

cells to create approximation multi-bit adders. Apart 

from the intrinsic decrease in switching capacitance, 

our methods lead to noticeably shorter critical 

pathways, which facilitate voltage scaling. Using the 

suggested approximate arithmetic units, we create 

designs for image and video compression algorithms 

and test them to show how effective our method is. 

Additionally, we establish basic mathematical 

models for these approximation adders' inaccuracy 

and power consumption. Additionally, we show 

how useful these approximation adders are in two 

digital signal processing architectures with 

particular quality constraints: the finite impulse 

response filter and the discrete cosine transform. 

Comparing the suggested approximation adders to 

current implementations that use correct adders, 

simulation findings show power savings of up to 

69%. 

N. Taheri Nejad and F. Seiler, A semi-serial 

approximation in-memristor adder based on IMPLY 

In recent years, research and development has 

focused heavily on new technologies and computing 

paradigms to help ease the Von Neumann 

bottleneck. From a computational and technical 

standpoint, memristors provide novel opportunities. 

Because they can carry out logical operations in 

memory, they are appropriate for In-Memory 

Computation (IMC) and have good data storage 

capabilities. Approximate computing, which is 

employed in error-resistant applications, is another 

new computing paradigm that lowers computation 

time and space usage.  

Here, we suggest a brand-new approximated 

complete adder that employs a semi-serial structure 

and the stateful logic Material Implication (IMPLY). 

We include this complete adder into a Ripple Carry 

Adder (RCA), which we then assess at the circuit 

level. The error metrics were assessed and 

contrasted with adders based on State-of-the-Art 

(SoA) IMPLY. In comparison to the precise 

technique, our solution uses up to 29% fewer steps 

and up to 34% less energy at 8-bit, and the 

Normalized Median Error Distance (NMED) is less 

than 0.01 in the majority of cases. The 

corresponding quality metrics are computed after 

applying the suggested adder to image processing. 

Given that the Peak Signal-to-Noise Ratio (PSNR) 

is more than 30 dB, all tested approximation degrees 

produce a suitable outcome.  In comparison to the 

precise calculations, the suggested method allows us 

to save almost 13.5mJ of energy while gray-scale 

filtering a 684×912 8-bit picture. 

A. S. Baroughi, H. S. Shahhoseini, N. Taheri Nejad, 

N. Amirafshar, and S. Shakibhamedan, ACE-CNN: 

Energy-efficient CNN-based image categorization 

with approximate carry disregard multipliers The 

Signed Carry Disregard Multiplier (SCDM8) is a 

series of signed approximation multipliers designed 

specifically for Convolutional Neural Network 

(CNN) integration. To assess the trade-off between 

accuracy and approximation, extensive tests were 

carried out on well-known pre-trained CNN models, 

such as VGG16, VGG19, ResNet101, ResNet152, 

MobileNetV2, InceptionV3, and ConvNeXt-T. The 

outcomes show that ACE-CNN works better than 

other setups, providing a favorable trade-off 

between accuracy and computational economy. 

According to our tests, SCDM8 reduces power 

usage by 35% on average while only slightly 

lowering accuracy by 1.5% when used with VGG16. 

Similarly, SCDM8 saves 42% of the energy while 

only compromising 1.8% of the accuracy when 

integrated into ResNet152. The first approximation 

version of ConvNeXt, ACE-CNN, offers an energy 

improvement of up to 72% at a cost of less than 

1.3% Top-1 accuracy. These findings demonstrate 

how well SCDM8 works as an approximation 

technique for a range of CNN models. For image 

classification tasks in CNNS, our investigation 

demonstrates that the ACE-CNN performs better 

than state-of-the-art methods in terms of accuracy, 

energy efficiency, and computing precision. When 

we looked at how resilient CNN models were to 

approximate multipliers, we found that resnet101 

was the most resilient, with an average accuracy 

difference of 0.97%, while lenet5 Inspired-CNN 

was the least resilient, with an average accuracy 

difference of 2.92%. By providing an efficient 

approximation method for CNN multipliers, our 

findings help choose energy-efficient approximate 

multipliers for CNN-based systems and advance the 

creation of energy-efficient deep learning systems. 
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Significant energy reductions with almost no loss of 

accuracy are made possible by the proposed 

SCDM8 family of approximation multipliers, which 

opens up new possibilities for effective deep 

learning applications. 

H. Chible, M. Saleh, M. Alameh, M. Osta, M. 

Ibrahim, and M. Valle, Techniques for approximate 

computation in embedded machine learning 

Incorporating intelligence into modern application 

areas like wearable technology, portable healthcare 

systems, and the Internet of Things is made possible 

by embedding machine learning. An evaluation of 

approximation computing techniques at the 

algorithmic, architectural, and circuit levels is 

presented in this work along with suggestions for 

future advancements and uses. The primary 

objective Aims to look at how approximate 

computing could make embedded Machine Learning 

(ML) systems more feasible and less complex. Even 

though machine learning (ML) is a strong paradigm 

for applications in the perceptual domain (vision, 

touch, hearing, etc.), real-time operation and ultra-

low power are still highly difficult goals because of 

their enormous computational complexity. 

However, approximation computing has become a 

viable way to lower time delay, simplify hardware, 

and boost energy efficiency.  

Bio-inspired imprecise computational blocks for 

effective VLSI implementation of soft-computing 

applications, H. R. Mahdiani, A. Ahmadi, S. M. 

Fakhraie, and C. Lucas To calculate the exact 

outcomes of the given computations, traditional 

digital hardware computational blocks with various 

architectures are used. Our suggested Bio-inspired 

Imprecise Computational blocks (bics) are unique in 

that they are made to deliver a useful approximation 

of the outcome rather than its exact value at a 

reduced cost. Compared to its exact competitors, 

these new structures are more efficient in terms of 

area, speed, and power usage. This work introduces 

the synthesis findings, error behaviors, and detailed 

descriptions of example BIC adder and multiplier 

architectures. The hardware defuzzification block of 

a fuzzy processor and a three-layer face recognition 

neural network are then demonstrated to be 

effectively implemented using these BIC structures.  

Inexact designs for estimated low power addition by 

cell replacement by H. A. Almurib, T. N. Kumar, 

and F. Lombardi Three designs of an approximation 

computing inexact adder cell are proposed in this 

research. Comparing these cells to both known 

inexact designs and an exact complete adder cell, a 

significantly less number of transistors are needed. 

At 45 nm, these imprecise cells are simulated and 

compared in terms of error metrics (like error rate) 

and circuit-based metrics (like energy consumption, 

latency, complexity, and energy delay product). 

Image addition is then explored as an application 

after evaluating several metrics for approximation 

computing through extensive simulation by 

substituting inexact cells, as those suggested in this 

work, for exact cells in a ripple carry adder. These 

findings demonstrate that the suggested designs 

outperform the current inexact cells reported in the 

technical literature in terms of latency, switching 

capacitance, and error metrics for picture quality 

and processing, while also using the least amount of 

power. 

 

III. PROPOSED METHODOLOGY 

3.1 METHODOLOGY 

Redefining approximation logic functions 

based on precise logic is a key strategy in the 

construction of approximated circuits [2]. This can 

be accomplished by employing a modified truth 

table or by removing or altering parts of the precise 

circuit [2], [38]. We can only utilize IMPLY and 

FALSE operations since we are working on 

topologies that are based on IMPLY. It is possible to 

simulate Boolean logic with just these two functions 

as they together make up the entire logic set {→, ⊥} 

[27], [47]. One IMPLY operation, denoted as a = a 

→ 0, can be used to simulate an inversion. Another 

memristor that has been previously reset is 

necessary for this. The only functions that can be 

replicated using two IMPLY operations are OR and 

NAND, which makes them excellent candidates for 

approximations. To minimize the ER for Sum and 

Cout while reducing the number of steps, the state-

of-the-art (SOA) IMPLY-based approximations 

were created [6, 34, 35]. 

 

 
 

Our goal in this study is to design the quickest adder 

while maintaining acceptable quality, not to 

decrease the ER. We developed and put into practice 

two IMPLY-based algorithms for various adder 

topologies, drawing inspiration from the 

methodology from [12]. As a result, we are using 
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the effective OR emulation, which just needs two 

IMPLY operations. For the parallel, semi-parallel, 

serial, and semi-serial structures, we developed two 

algorithmic strategies. For the remainder of this 

study, we will refer to the algorithms by their 

topology in conjunction with either NoCarry+ for 

the advanced implementation or IMPLY-based 

NoCarry (NC) for the base. Since the carry-out is 

not propagated (for example, SINC and SINC+ for 

the Serial IMPLY-based NoCarry(+) algorithm), 

this name was selected. To establish the Sum for 

each bit, the simple version just uses OR 

combinations between the a and b inputs. No carry-

out is created or spread, and the carry-in is totally 

ignored. The Cout is therefore assigned to the 

logical value "0." The NoCarry version's logical 

equations are 

By altering the final approximated bit, we improved 

the basic version in our second implementation. Up 

to the final estimated complete adder, we use the 

same formulae to compute the Sum and Cout. We 

still ignore the carry-in at this point, but we create a 

carry-out instead.to spread. This time, we set the 

Cout to be an AND b in order to reduce the 

likelihood of spreading the fake Cout to the precise 

bits. For this enhanced implementation, the logical 

equations are using an RCA integrated with k 

approximation and n − k precise adders. To ensure 

compatibility with precise adders, we made sure that 

the sum for each suggested method is kept in the b-

memristor. Table II displays the truth table for both 

the standard and sophisticated implementations, 

with the incorrect locations highlighted in red. 

While the ER of Cout is 4/8 for the NoCarry and 

only 2/8 for the sophisticated NoCarry+ adder, the 

ER of Sum is 4/8 for both implementations.  

 
The carrying is the Cout of the preceding bit as we 

wish to incorporate our whole adder as the bottom 

bits in an RCA. In the advanced form, the carry-in is 

likewise "0" since the Cout is set to "0" for all 

adders except the final one. This missing carry 

propagation attribute allows us to simplify the truth 

table to a form in which c = 0 and only a and b can 

change. Table III, where the ER of Sum is lowered 

to 1/4, displays the reduced truth table. The 

NoCarry+ adder has no erroneous Cout position in 

the reduced truth table, although the NoCarry 

adder's ER of Cout is likewise lowered to 1/4. With 

this simplified version, an error only happens when 

both a and b are logical "1." Here, it is crucial to 

remember that the truth table is not actually 

decreased. The inputs that can occur at each 

estimated bit are highlighted using this reduced truth 

table as a visualization tool. 

 

TABLE 3.1: NOCARRY AND NOCARRY+ 

TRUTH TABLE 

 
 

TABLE 3.2: REDUCED NOCARRY AND 

NOCARRY+ TRUTH TABLE 

 
 

A Serial Topology Consisting of SINC/SINC+ 

Memristors arranged in the same row or column of a 

crossbar array and linked to the same resistor make 

up the serial IMPLY topology [16], [27]. Because 

there is just one processing region, activities are 

carried out sequentially and parallelization is not 

feasible. Table IV displays the SINC algorithm in its 

entirety. To ensure proper operation, we reset the 

work memristor in the first stage. We compute and 

store the inversion of an in the work memristor in 

the second phase. The Sum result, which is a + b, is 

then saved in the b-memristor. Table V, which 

follows the same methodology as the previous 

version, shows the precise steps involved in the 

SINC+ algorithm. The operations indicated in blue, 

which are only calculated once in the final estimated 

adder, are where they diverge. As a result, we 

require a second work memory. Prior to the Sum 

being stored in the b-memristor in the third phase, it 

is utilized to save the inversion of b. The inversion 

is then stored in the c-memristor once ab has been 

calculated. As a result, the Cout is equal to ab and is 

usable for higher-bit computation. For an n-bit 

calculation, the SINC method requires 2n + 1 
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memristors and 3n steps. As we shall see in 

subsequent sections, the SINC+ algorithm has 

improved error-reduction behavior but requires 3n + 

3 steps and 2n + 2 memristors. 

 

TABLE 3.3: EXACT SINC ALGORITHM 

PROCEDURE IN SERIAL TOPOLOGY 

 
 

B. PINC/PINC+ parallel topology 

There are n distinct serial topologies that make up 

the parallel topology. CMOS switches can be used 

to link each of them to a common c-memristor [19]. 

Every bit in this structure may be calculated 

concurrently. Because they depend on the result of 

the previous bit, the only steps that cannot be 

completed at the same time are those that depend on 

the carry-in. The serial implementations from Table 

IV and Table V follow the same precise process as 

PINC and PINC+. Once more, just the final bit of 

the PINC+ version uses the procedures in blue.  

 

TABLE 3.4The precise steps used by the SINC+ 

algorithm in serial topology 

(BLUE-COLORED PERFORMANCES ARE 

ONLY DONE AT THE LAST 

APPROXIMATED BIT  OF SINC+.) 

 
 

However, we compute all of the bits at once rather 

than one after the other. We can fully parallelize 

each estimated bit since the PINC and PINC+ 

algorithms are independent of the carry-in. Twelve 

carry-independent steps are initially calculated by 

the precise parallel method from [19]. Therefore, 

before the carry-dependent portion of the first exact 

algorithm starts, both PINC and PINC+ are run. By 

using the PINC+ technique for the lower bits in an 

RCA setup, we were able to display this in Figure 3. 

As we can see, the number of precise adders n − k is 

the sole factor that affects the overall number of 

steps. The PINC algorithm is no different. For an n-

bit addition, the PINC method only needs three steps 

and three memristors. The PINC+ adder requires 3n 

+ 1 memristors and 6 stages. 

 

C. S-SINC/S-SINC+ is the semi-serial topology. 

The a and b inputs are arranged in two parallel rows 

in the semi-serial topology [25]. Switches can be 

used to link both rows to the work and carry 

memristors. In accordance with the original paper 

[25], we will refer to the rows containing the a-

memristors and the b-memristors as Section I and 

Section II. Table VI displays the S-SINC method, 

where we decreased the number of steps needed 

perreduced to two.  

This was accomplished using a work memristor 

switching system, in which the calculations are 

made using w1 and w2 in turn. Parallel to this, the 

unused work memristor is reset. Both work 

memristors must be reset by taking an extra step 

before the first bit. 

Table VII displays the S-SINC+ algorithm. By 

adding two more stages to the S-SINC method, we 

compute the Cout = ab. The two work memristors 

are utilized in parallel for the last estimated bit. For 

a nbit computation, S-SINC needs 2n + 1 steps, 

whereas the S-SINC+ method requires 2n + 3 steps. 

Four switches and 2n+2 memristors are used in the 

S-SINC method. Two more switches and an extra 

memristor are required for the Cout in the advanced 

method (S-SINC+). 

 

TABLE 3.5: S-SINC ALGORITHM EXACT 

PROCEDURE IN THE SEMI-SERIAL 

TOPOLOGY 

(BLUE-COLORED OPERATIONS ARE ONLY 

PERFORMED ONCE.) 

 

 

 

TABLE 3.6: S-SINC+ ALGORITHM EXACT 

PROCEDURE IN THE SEMI-SERIAL 

TOPOLOGY 

Only one calculation is made for red operations. 

BLUE-COLORED OPERATIONS ARE ONLY 

DONE AT THE LAST APPROXIMATED BIT  
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D. S-PINC/S-PINC+ Semi-Parallel Topology 

Two parallel rows (parts) with either the input 

memristors a and b make up the semi-parallel 

topology [24]. A work memristor is also included in 

each area. Furthermore, the The circuit's Section II 

contains the memristor. Switches (S1 for segment I 

and S3 for Section II) can be used to link each 

segment of the circuit to a resistor. The sections can 

be linked together to share data using a third switch 

(S2). This will be referred to as a "between sections" 

computation. Please refer to [24] for more specific 

details on the semi-parallel topology. Table VIII 

displays the S-PINC algorithm, which is somewhat 

comparable to SINC. The final step is calculated 

differently for each segment. For an n-bit 

calculation, this method needs 2n+1 Cmemristors 

and 3n steps. To save the inversion of b in parallel 

with the S-PINC steps, we employ an extra work 

memristor in the S-PINC+ algorithm. Next, we must 

compute ab and store it in the c-memristor in two 

phases. This means that for an n-bit addition, the 

method requires 2n + 3 memristors and 3n + 2 steps. 

Table IX shows the precise process with the switch 

states. 

 

TABLE 3.7: PRECISE S-PINC PROCEDURE 

IN THE SEMI-PARALLEL TOPOLOGY 

 
 

TABLE 3.8: EXACT PROCEDURE OF S-

PINC+ IN THE SEMI-PARALLEL 

TOPOLOGY 

( Only the final approximate bit is used for 

operations that are colored blue.) 

 
 

3.2 SIMULATING AT THE CIRCUIT LEVEL: 

A. Configuring a Circuit Simulation 

We used LT-SPICE to simulate the algorithms at the 

circuit level in order to confirm their operation. We 

employed a model for this that was based on the 

SPICE implementation of the Voltage-controlled 

Threshold Adaptive Memristor (VTEAM) model 

[36], [25], [48]. By fitting the model to a genuine 

discrete Knowm memristor, the parameters in this 

model are established similarly to those in Table X 

[49]. This makes it easier for us to compare our 

work with that of others who have used the same 

model and boosts our confidence in the usefulness 

of our circuit simulations. Similar to the distinctions 

between integrated and discrete CMOS devices, 

discrete memristors operate more slowly and use 

more power. It becomes sense to anticipate that the 

integrated memristor devices would operate with 

much greater speed and power efficiency. We 

employ measurement-fitted models to guarantee a 

realistic and useful implementation of our suggested 

circuits because integrated memristors are not 

readily available. To enable an honest and 

straightforward comparison to SoA works like [6], 

[19], [27], and [35], we selected the IMPLY specific 

parameters. 

 

4. RESULTS & DISCUSSION 

 

The simulation and implementation of accelerated 

image processing using IMPLY-based no-carry 

approximated adders is a structured process carried 

out within the Xilinx Vivado Design Suite, a 

leading platform for FPGA-based design. The 

methodology begins by creating a new RTL 

(Register Transfer Level) project in Vivado, where 

the source files defining the arithmetic architecture 

are introduced. In this study, the Kogge-Stone 

Adder (KSA) is employed due to its parallel prefix 

structure, which enables faster computation and 

reduced delay compared to conventional ripple-

carry or carry-lookahead adders. Its efficiency 

makes it particularly suitable for high-performance 

applications such as real-time image processing. 

 

Following the inclusion of Verilog modules, the 

FPGA board specifications are defined through 

Xilinx’s device library, ensuring correct mapping of 

I/O pins. At this stage, the tb_KSA64 module is 

designated as the top-level source for the initial 

simulation. Running the simulation provides 

insights into device utilization, particularly the 

estimated versus available pins, and also generates a 

schematic representation of the design. These 

outputs assist in validating the logical structure 

before hardware implementation. 

 

The subsequent step involves implementation, 

where the toolchain evaluates hardware-level 

performance metrics. This includes estimation 

of power consumption, total on-chip power 

dissipation, and junction temperature, which are 
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critical parameters in optimizing FPGA-based 

accelerators for energy-efficient image processing. 

The implementation phase also produces a summary 

of resource utilization, which is essential for 

determining scalability and feasibility on specific 

FPGA boards. 

 

Next, RTL analysis elaborates the device 

architecture, offering a hierarchical view of the 

design. This step is particularly significant from a 

research perspective, as it validates whether the 

structural optimization achieved through 

approximated adders translates into reduced 

complexity without compromising functional 

accuracy. Finally, the tb_KSA64 (Test.v) testbench 

is selected as the top module, and a comprehensive 

simulation is executed. The final simulation output 

verifies functional correctness, thereby 

demonstrating how IMPLY-based no-carry 

approximated adders can accelerate image 

processing by achieving a balance between 

performance, power efficiency, and hardware 

resource utilization. 

This methodology not only validates the feasibility 

of approximate arithmetic in hardware accelerators 

but also highlights its potential for applications 

requiring high-speed and energy-efficient image 

processing. 

 

 
 

 
 

FIGURE: SIMULATION OF THE PROJECT  

            (the utilization of the I/O pins) 

 

 
FIGURE: IMPLEMENTATION OF THE 

PROJECT 

            (on-chip power consumption details) 

 

 
FIGURE: Schematic Diagram 

 

 
 FIGURE: Final Output Of The Project 

 

5. CONCLUSION 

In this study, eight algorithms on the serial, 

parallel, semi-serial, and semi-parallel topologies 

are mapped to two approximated addition ideas for 

implementation utilizing memristive IMPLY logic. 

We demonstrated their advantages by using them in 

in-memory image processing. To cut down on steps, 

energy, and space usage, we made use of each adder 

structure's special benefits. Compared to precise 

adders, our method saves up to 12% of memristors, 

8% to 54% of energy usage, and 6% to 54% of 

steps. Our method increases the speed by up to 72% 

and is 9%–43% more energy efficient than existing 

approximated adders. In terms of both NMED and 

MRED, we were able to accomplish this while 

producing a greater accuracy. To the best of our 

knowledge, we report the first estimated adders in 

both parallel and semi-parallel topologies, which 

reduced the process count of an 8-bit addition to just 

33 steps. We evaluated the error metrics, confirmed 

that our adders worked, and incorporated them as 
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the bottom bits of an RCA. In many real-world 

image processing applications, we used these partly 

approximated RCAs. To broaden the scope of our 

research, we suggested fresh datasets for picture 

addition and grayscale filtration. With up to 5/8 

estimated adders, we were able to obtain satisfactory 

PSNR measurements of more than 30dB. When 

compared to SoA approximations, we increased the 

number of steps by up to 72%, the energy 

consumption by 9% − 43%, and the image quality 

by up to 3.4dB of PSNR. 

We refined our NoCarry technique to use just one 

cycle per estimated bit in the image subtraction 

application. This resulted in a 57% increase in 

energy efficiency. Additionally, our method 

produces 3dB–10dB of PSNR more picture quality 

than SoA estimates. As an illustration of more 

intricate end uses, we tested our estimated adders on 

Gaussian smoothing after integrating them into an 

array multiplier. According to our findings, the 

suggested approach can approximate up to 86% 

while still producing results that are satisfactory. 

Future studies should focus on a more thorough 

examination of more application-specific 

approximations and their design. 
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